3.14.15 \(\int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx\) [1315]

3.14.15.1 Optimal result
3.14.15.2 Mathematica [A] (verified)
3.14.15.3 Rubi [A] (verified)
3.14.15.4 Maple [A] (verified)
3.14.15.5 Fricas [A] (verification not implemented)
3.14.15.6 Sympy [F(-1)]
3.14.15.7 Maxima [A] (verification not implemented)
3.14.15.8 Giac [A] (verification not implemented)
3.14.15.9 Mupad [B] (verification not implemented)

3.14.15.1 Optimal result

Integrand size = 29, antiderivative size = 105 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {b \csc (c+d x)}{a^2 d}-\frac {\csc ^2(c+d x)}{2 a d}-\frac {\left (2 a^2-b^2\right ) \log (\sin (c+d x))}{a^3 d}-\frac {\left (a^2-b^2\right )^2 \log (a+b \sin (c+d x))}{a^3 b^2 d}+\frac {\sin (c+d x)}{b d} \]

output
b*csc(d*x+c)/a^2/d-1/2*csc(d*x+c)^2/a/d-(2*a^2-b^2)*ln(sin(d*x+c))/a^3/d-( 
a^2-b^2)^2*ln(a+b*sin(d*x+c))/a^3/b^2/d+sin(d*x+c)/b/d
 
3.14.15.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.92 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {2 b \csc (c+d x)}{a^2}-\frac {\csc ^2(c+d x)}{a}+\frac {\frac {2 b^2 \left (-2 a^2+b^2\right ) \log (\sin (c+d x))-2 \left (a^2-b^2\right )^2 \log (a+b \sin (c+d x))}{a^3}+2 b \sin (c+d x)}{b^2}}{2 d} \]

input
Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 
output
((2*b*Csc[c + d*x])/a^2 - Csc[c + d*x]^2/a + ((2*b^2*(-2*a^2 + b^2)*Log[Si 
n[c + d*x]] - 2*(a^2 - b^2)^2*Log[a + b*Sin[c + d*x]])/a^3 + 2*b*Sin[c + d 
*x])/b^2)/(2*d)
 
3.14.15.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3316, 27, 522, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^5}{\sin (c+d x)^3 (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3316

\(\displaystyle \frac {\int \frac {\csc ^3(c+d x) \left (b^2-b^2 \sin ^2(c+d x)\right )^2}{a+b \sin (c+d x)}d(b \sin (c+d x))}{b^5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\csc ^3(c+d x) \left (b^2-b^2 \sin ^2(c+d x)\right )^2}{b^3 (a+b \sin (c+d x))}d(b \sin (c+d x))}{b^2 d}\)

\(\Big \downarrow \) 522

\(\displaystyle \frac {\int \left (\frac {b \csc ^3(c+d x)}{a}-\frac {b^2 \csc ^2(c+d x)}{a^2}+\frac {\left (b^4-2 a^2 b^2\right ) \csc (c+d x)}{a^3 b}-\frac {\left (a^2-b^2\right )^2}{a^3 (a+b \sin (c+d x))}+1\right )d(b \sin (c+d x))}{b^2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {b^3 \csc (c+d x)}{a^2}-\frac {b^2 \left (2 a^2-b^2\right ) \log (b \sin (c+d x))}{a^3}-\frac {\left (a^2-b^2\right )^2 \log (a+b \sin (c+d x))}{a^3}-\frac {b^2 \csc ^2(c+d x)}{2 a}+b \sin (c+d x)}{b^2 d}\)

input
Int[(Cos[c + d*x]^2*Cot[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 
output
((b^3*Csc[c + d*x])/a^2 - (b^2*Csc[c + d*x]^2)/(2*a) - (b^2*(2*a^2 - b^2)* 
Log[b*Sin[c + d*x]])/a^3 - ((a^2 - b^2)^2*Log[a + b*Sin[c + d*x]])/a^3 + b 
*Sin[c + d*x])/(b^2*d)
 

3.14.15.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 522
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_. 
), x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], 
x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3316
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x, b* 
Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1) 
/2] && NeQ[a^2 - b^2, 0]
 
3.14.15.4 Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.94

method result size
derivativedivides \(\frac {\frac {\sin \left (d x +c \right )}{b}-\frac {1}{2 a \sin \left (d x +c \right )^{2}}+\frac {\left (-2 a^{2}+b^{2}\right ) \ln \left (\sin \left (d x +c \right )\right )}{a^{3}}+\frac {b}{a^{2} \sin \left (d x +c \right )}+\frac {\left (-a^{4}+2 a^{2} b^{2}-b^{4}\right ) \ln \left (a +b \sin \left (d x +c \right )\right )}{a^{3} b^{2}}}{d}\) \(99\)
default \(\frac {\frac {\sin \left (d x +c \right )}{b}-\frac {1}{2 a \sin \left (d x +c \right )^{2}}+\frac {\left (-2 a^{2}+b^{2}\right ) \ln \left (\sin \left (d x +c \right )\right )}{a^{3}}+\frac {b}{a^{2} \sin \left (d x +c \right )}+\frac {\left (-a^{4}+2 a^{2} b^{2}-b^{4}\right ) \ln \left (a +b \sin \left (d x +c \right )\right )}{a^{3} b^{2}}}{d}\) \(99\)
parallelrisch \(\frac {-8 \left (a -b \right )^{2} \left (a +b \right )^{2} \ln \left (2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )+8 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{4}+8 \left (-2 a^{2} b^{2}+b^{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b^{2} a^{2} \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-3\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 a \,b^{3} \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-3 a^{2} b^{2} \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 a^{3} b \sin \left (d x +c \right )}{8 a^{3} b^{2} d}\) \(182\)
risch \(\frac {i a x}{b^{2}}-\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 b d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 b d}+\frac {2 i a c}{b^{2} d}+\frac {2 i \left (-i a \,{\mathrm e}^{2 i \left (d x +c \right )}+b \,{\mathrm e}^{3 i \left (d x +c \right )}-b \,{\mathrm e}^{i \left (d x +c \right )}\right )}{d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}-\frac {2 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d a}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) b^{2}}{a^{3} d}-\frac {a \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{b^{2} d}+\frac {2 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{a d}-\frac {b^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{a^{3} d}\) \(270\)
norman \(\frac {-\frac {1}{8 a d}-\frac {\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}+\frac {b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2} d}+\frac {b \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2} d}+\frac {\left (4 a^{2}+3 b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2} b d}+\frac {\left (4 a^{2}+3 b^{2}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2} b d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {a \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2} d}-\frac {\left (2 a^{2}-b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{3} d}-\frac {\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \ln \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}{a^{3} b^{2} d}\) \(285\)

input
int(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(sin(d*x+c)/b-1/2/a/sin(d*x+c)^2+1/a^3*(-2*a^2+b^2)*ln(sin(d*x+c))+1/a 
^2*b/sin(d*x+c)+(-a^4+2*a^2*b^2-b^4)/a^3/b^2*ln(a+b*sin(d*x+c)))
 
3.14.15.5 Fricas [A] (verification not implemented)

Time = 0.41 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.66 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {a^{2} b^{2} + 2 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4} - {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (b \sin \left (d x + c\right ) + a\right ) + 2 \, {\left (2 \, a^{2} b^{2} - b^{4} - {\left (2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac {1}{2} \, \sin \left (d x + c\right )\right ) + 2 \, {\left (a^{3} b \cos \left (d x + c\right )^{2} - a^{3} b - a b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{3} b^{2} d \cos \left (d x + c\right )^{2} - a^{3} b^{2} d\right )}} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
1/2*(a^2*b^2 + 2*(a^4 - 2*a^2*b^2 + b^4 - (a^4 - 2*a^2*b^2 + b^4)*cos(d*x 
+ c)^2)*log(b*sin(d*x + c) + a) + 2*(2*a^2*b^2 - b^4 - (2*a^2*b^2 - b^4)*c 
os(d*x + c)^2)*log(-1/2*sin(d*x + c)) + 2*(a^3*b*cos(d*x + c)^2 - a^3*b - 
a*b^3)*sin(d*x + c))/(a^3*b^2*d*cos(d*x + c)^2 - a^3*b^2*d)
 
3.14.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**5*csc(d*x+c)**3/(a+b*sin(d*x+c)),x)
 
output
Timed out
 
3.14.15.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.94 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {2 \, \sin \left (d x + c\right )}{b} - \frac {2 \, {\left (2 \, a^{2} - b^{2}\right )} \log \left (\sin \left (d x + c\right )\right )}{a^{3}} - \frac {2 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \log \left (b \sin \left (d x + c\right ) + a\right )}{a^{3} b^{2}} + \frac {2 \, b \sin \left (d x + c\right ) - a}{a^{2} \sin \left (d x + c\right )^{2}}}{2 \, d} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
1/2*(2*sin(d*x + c)/b - 2*(2*a^2 - b^2)*log(sin(d*x + c))/a^3 - 2*(a^4 - 2 
*a^2*b^2 + b^4)*log(b*sin(d*x + c) + a)/(a^3*b^2) + (2*b*sin(d*x + c) - a) 
/(a^2*sin(d*x + c)^2))/d
 
3.14.15.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.24 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {2 \, \sin \left (d x + c\right )}{b} - \frac {2 \, {\left (2 \, a^{2} - b^{2}\right )} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a^{3}} - \frac {2 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \log \left ({\left | b \sin \left (d x + c\right ) + a \right |}\right )}{a^{3} b^{2}} + \frac {6 \, a^{2} \sin \left (d x + c\right )^{2} - 3 \, b^{2} \sin \left (d x + c\right )^{2} + 2 \, a b \sin \left (d x + c\right ) - a^{2}}{a^{3} \sin \left (d x + c\right )^{2}}}{2 \, d} \]

input
integrate(cos(d*x+c)^5*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
1/2*(2*sin(d*x + c)/b - 2*(2*a^2 - b^2)*log(abs(sin(d*x + c)))/a^3 - 2*(a^ 
4 - 2*a^2*b^2 + b^4)*log(abs(b*sin(d*x + c) + a))/(a^3*b^2) + (6*a^2*sin(d 
*x + c)^2 - 3*b^2*sin(d*x + c)^2 + 2*a*b*sin(d*x + c) - a^2)/(a^3*sin(d*x 
+ c)^2))/d
 
3.14.15.9 Mupad [B] (verification not implemented)

Time = 11.82 (sec) , antiderivative size = 238, normalized size of antiderivative = 2.27 \[ \int \frac {\cos ^2(c+d x) \cot ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^2\,d}-\frac {\frac {a}{2}-2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (4\,a^2+b^2\right )}{b}}{d\,\left (4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}+\frac {a\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{b^2\,d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (2\,a^2-b^2\right )}{a^3\,d}-\frac {\ln \left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{a^3\,b^2\,d} \]

input
int(cos(c + d*x)^5/(sin(c + d*x)^3*(a + b*sin(c + d*x))),x)
 
output
(b*tan(c/2 + (d*x)/2))/(2*a^2*d) - (a/2 - 2*b*tan(c/2 + (d*x)/2) + (a*tan( 
c/2 + (d*x)/2)^2)/2 - (2*tan(c/2 + (d*x)/2)^3*(4*a^2 + b^2))/b)/(d*(4*a^2* 
tan(c/2 + (d*x)/2)^2 + 4*a^2*tan(c/2 + (d*x)/2)^4)) - tan(c/2 + (d*x)/2)^2 
/(8*a*d) + (a*log(tan(c/2 + (d*x)/2)^2 + 1))/(b^2*d) - (log(tan(c/2 + (d*x 
)/2))*(2*a^2 - b^2))/(a^3*d) - (log(a + 2*b*tan(c/2 + (d*x)/2) + a*tan(c/2 
 + (d*x)/2)^2)*(a^4 + b^4 - 2*a^2*b^2))/(a^3*b^2*d)